
YugaByte DB 1.3.1
Kyle Kingsbury
2019-09-05

YugaByte DB is a distributed, multi-model transactional database based on hybrid logical clocks. In our previous
analysis, we found three safety issues in 1.1.9’s CQL interface, all of which were fixed by 1.2.0. In this analysis,
we focus on YugaByte DB’s upcoming support for serializable SQL transactions. We found two safety issues:
improperly initialized DEFAULT columns, and G2-item (anti-dependency) cycles in transactions. The G2-item
issue was fixed in 1.3.1.2-b1. We also found several issues with cluster setup and table initialization. YugaByte
has written a companion blog post to this report. This work was funded by YugaByte, and conducted in accordance
with the Jepsen ethics policy.

1 Updates

2019-09-05: YugaByte’s blog post states YugaByte DB
“passes Jepsen tests”. We feel obligated to state that
YugaByte DB’s Jepsen test suite does not pass, though
it may in the future. Race conditions in YugaByte
DB’s schema system can cause correctness errors. For
example, inserting rows into a freshly-created table
with DEFAULT values may result in the values for those
columns initialized to NULL instead. We can also now
confirm that this issue affects all default values, not just
DEFAULT NOW(). It also appears that DDL race con-
ditions might, under certain conditions, render tables
completely unusable.

2 Background

YugaByte DB is an open-source, multi-model, dis-
tributed database. It wraps a sharded, transac-
tional document store in multiple interfaces, includ-
ing YCQL (a Cassandra-style query language), and
YSQL, a Postgres-flavored SQL API. Intended for high-
performance systems of record, YugaByte DB is de-
signed for replication across datacenters worldwide.

Under the hood, YugaByte DB is comprised of a sin-
gle Raft-replicated coordination service called master1,
and a sharded collection of tablet servers, which store
data in Raft-replicated shards. A custom transac-
tion protocol, loosely adapted from Spanner, provides

multi-key transactions.

When we tested YugaByte DB version 1.1.9, the YSQL
interface was still in beta, so we focused on YCQL. The
YCQL interface does not support generalized transac-
tions: transactions must either be comprised of multi-
ple writes, or a single read query (which may return
multiple rows from a single table). Queries with reads
and writes, or multiple reads, are impossible to write
in YCQL. This limited the scope of our testing; certain
types of transactional workloads were simply not ex-
pressible.

Moreover, 1.1.9 supported only snapshot isolation,
rather than serializability. This meant that transac-
tions could encounter write skew or other consistency
anomalies.

Serializable isolation was added in version 1.2.6, and
in 1.3.1, YugaByte DB is approaching general availabil-
ity for SQL, including support for generalized trans-
actions. YugaByte asked Jepsen to help review their
transactional support in preparation for the official re-
lease of SQL support.

2.1 Consistency

YugaByte DB maps SQL’s SERIALIZABLE isolation
level to serializability, and REPEATABLE READ, READ
COMMITTED, and READ UNCOMMITTED to snapshot isola-
tion.

1Where databases use “master” and “slave” terminology, Jepsen typically refers to those roles as “primary” and “secondary”. In this
case, “primary” and “secondary” more closely map to Raft leaders and followers which are another, orthogonal aspect of YugaByte DB’s
architecture. We’ve opted to use “master” here to avoid further confusion.

1

https://github.com/yugaByte/yugabyte-db/
https://jepsen.io/analyses/yugabyte-db-1.1.9
https://jepsen.io/analyses/yugabyte-db-1.1.9
https://blog.yugabyte.com/yugabyte-db-distributed-sql-api-passes-jepsen-tests
https://yugabyte.com/
https://jepsen.io/ethics
https://blog.yugabyte.com/yugabyte-db-distributed-sql-api-passes-jepsen-tests
https://github.com/YugaByte/yugabyte-db/issues/2021
https://github.com/YugaByte/yugabyte-db/issues/2224
https://github.com/YugaByte/yugabyte-db/issues/2224
https://www.yugabyte.com/
https://github.com/yugaByte/yugabyte-db/
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
https://jepsen.io/analyses/yugabyte-db-1.1.9
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/serializable
https://docs.yugabyte.com/latest/api/ysql/commands/txn_set/


Serializable and snapshot isolated transactions in Yu-
gaByte DB’s key-value storage layer work similarly,
acquiring write and (for serializability) read locks on
records, and resolving write-write (for snapshot isola-
tion) and read-write (for serializable) conflicts using
randomly generated transaction priorities and hybrid
logical clocks. Transactions proceed through a four-
phase process: creating a transaction status record,
writing provisional records for each update, marking
the status record as committed, and (asynchronously)
promoting provisional writes to standard records, be-
fore cleaning up the status record.

Hybrid logical clocks, used to resolve transaction con-
flicts, rely in part on well-synchronized wall clocks for
correctness. YugaByte DB also employs leader leases
based on CLOCK_MONOTONIC_RAW to provide lineariz-
able key-value reads without the standard round trip
between Raft leaders and followers, which means that
the linearizability of reads depends on the rate at
which each node’s monotonic clock advances. Patho-
logically fast or slow clocks could result in stale reads.

3 Test Design

YugaByte independently ported the YCQL tests to
YSQL, and Jepsen introduced a new, more general test
of transactional isolation, designed to identify depen-
dency cycles between transactions, up to serializabil-
ity. As before, we measured YugaByte DB using sev-
eral failure modes, including tablet server and mas-
ter crashes; single-node, majority-minority, and non-
transitive partitions; process pauses; instantaneous
and stroboscopic changes to clocks, up to hundreds of
seconds; and combinations of the above events.

3.1 Append Test

Jepsen is experimenting with a new type of test for
transactional databases. The append test models the
database as a collection of named lists, and performs
transactions comprised of read and append operations.
A read returns the value of a particular list, and an ap-
pend adds a single unique element to the end of a par-
ticular list. We derive ordering dependencies between
these transactions, and search for cycles in that depen-
dency graph to identify consistency anomalies.

4 Results

We evaluated YugaByte DB on five-node Debian
Stretch clusters, with replication factor 3. Three nodes
ran masters, and all five ran tablet servers. We tested

versions 1.3.1.0 and 1.3.1.2-b1, and deployed to both
LXC and EC2 instances.

We found several issues, ranging from issues with clus-
ter startup and table creation to resource leaks and
safety violations. Each is presented below.

4.1 Create Table Constraint Violations

We encountered several problems creating tables in Yu-
gaByte DB. For example, issuing a request like

create table mice (
id int primary key,
squeak text

);

could throw errors like “duplicate key value vio-
lates unique constraint ‘pg_class_oid_index’ ”, or
“duplicate key value violates unique constraint
‘pg_depend_reference_index’ ”, even when create table
operations were executed by a single thread to limit
concurrency.

In YugaByte DB, DDL operations like table creation
and schema changes are not transactional. If a mas-
ter leader election takes place during table creation,
the Postgres system tables could be created, but the
create table operation would fail, thanks to the
change in leadership. When we retried table creation
on the new leader, it conflicted with the originally cre-
ated table, causing a duplicate key value error.

These are bugs 1962 and 1993 respectively, both of
which should be fixed when DDL is properly transac-
tional.

4.2 Create Table Type Already Exists

Similarly, creating tables using create table ...
if not exists could, on occasion, throw errors
like ERROR: type "append3" already exists.
Hint: A relation has an associated type of
the same name, so you must use a name that
doesn't conflict with any existing type.

This constraint was violated because YugaByte DB al-
lowed two requests to create the same table, each with
a distinct UUID—and only detected the error once it
came time to create the associated type. Why was Yu-
gaByte DB able to create two tables with the same
name? Because tables are tracked in the catalog man-
ager by their UUIDs, rather than by table names. Ta-
ble names are maintained in a metadata cache, which
is asynchronously updated. This design allows table
creation to race, resulting in multiple tables with iden-
tical names.

2

https://docs.yugabyte.com/latest/architecture/transactions/isolation-levels/
https://docs.yugabyte.com/latest/architecture/transactions/isolation-levels/
https://docs.yugabyte.com/latest/architecture/transactions/distributed-txns/
https://docs.yugabyte.com/latest/architecture/transactions/isolation-levels/
https://docs.yugabyte.com/latest/architecture/transactions/isolation-levels/
https://docs.yugabyte.com/latest/architecture/transactions/transactional-io-path/
https://docs.yugabyte.com/latest/architecture/transactions/transactional-io-path/
https://jepsen.io/analyses/yugabyte-db-1.1.9
https://github.com/jepsen-io/jepsen/blob/bb972671c84f054426216392d99db0792947a1d2/yugabyte/src/yugabyte/ysql/append.clj#L45-L125
https://github.com/YugaByte/yugabyte-db/issues/1383
https://github.com/YugaByte/yugabyte-db/issues/1962
https://github.com/YugaByte/yugabyte-db/issues/1993
https://github.com/YugaByte/yugabyte-db/issues/1991
https://github.com/YugaByte/yugabyte-db/issues/1991
https://github.com/YugaByte/yugabyte-db/issues/1476


4.3 And YOU Get a Table!

To work around table creation issues like these, there’s
a simple solution: catch the appropriate error mes-
sages, and retry. On a subsequent create table re-
quest, YugaByte DB’s table metadata system will real-
ize the table already exists, the if not exists clause
will kick in, and the operation can complete as a no-op.

Typically.

On occasion, YugaByte DB would fail to notice the ta-
ble had been created before, and allow every retry oper-
ation to create yet another table. Each table consumes
some disk and memory overhead, and over a few hours
the cluster could consume all available memory, be-
fore the OOM killer kicked in, and enough processes
died to bring cluster operations to a halt. In one of
our tests which hit this scenario, a single remaining
tablet server process spun at 93-97% CPU (of 48 logi-
cal cores).

Like the type already exists error we discussed
previously, this issue stems from the fact that table
names are stored in a cache, rather than a linearizable
data structure. Once issue 1476 is resolved, this prob-
lem should be fixed.

4.4 Crash on Table Creation

In rare cases, creating a table in YugaByte DB could
cause one or more master nodes to crash, with an error
message like “check failed: ‘ysql_catalog_config_.get()’
Must be non Null”. These crashes occurred shortly af-
ter cluster creation, but since we only create tables
shortly after startup, we can’t say whether this issue
affects long-running clusters, or is only a risk for newly
created ones.

YugaByte believes this table creation issue involves a
write request sent to a non-leader master node—which
could happen during or after a leader election—and
missing safety code to ensure that that node is actually
a leader before making changes to the YSQL catalog.

4.5 Slow Recovery During Partitions

During network partitions, including those which iso-
late only a single node from the rest of the cluster,
YugaByte DB generally recovers within ~10 seconds.
However, roughly 1 in 20 partitions in our testing re-
sulted in YugaByte DB going largely (but not entirely)
unavailable for over a hundred seconds.

YugaByte is still investigating.

Figure 1: Request latencies over time show a cluster taking over 100 seconds to recover during a network
partition.

4.6 A Plethora of Worker Processes

When we moved to longer (~1200 second) tests, a new
problem arose: tests terminated by the out-of-memory
killer. Nodes would leak roughly 5 MB of memory per

second, before the OOM killer eventually terminated
the tablet server process on that node. Worse yet, sub-
sequent tests on the same nodes would crash immedi-
ately for want of memory—despite the YugaByte DB’s
processes being killed between tests!

3

https://github.com/YugaByte/yugabyte-db/issues/2001
https://github.com/YugaByte/yugabyte-db/issues/1476
https://github.com/YugaByte/yugabyte-db/issues/1995


There are two separate problems here. The first is that
tablet servers spawn a backend postmaster process to
handle transactions, which in turns spawns a worker
process per connection—but when tablet servers are
killed, they don’t ensure the postmaster or worker pro-
cesses exit as well.

The second problem is that worker processes leak over
time: in some of our tests, the number of extant worker
processes rose by roughly 1.5 processes/second, even
when the network connections those processes were
meant to handle had long since closed. Each process
reported its status as “idle in tranasction (aborted)”.

As far as we can tell, these processes never exit, and
must be manually killed—perhaps because they’re
stuck inside a transaction, and unable to respond to
the closure of their connection. YugaByte is investigat-
ing.

4.7 Undercounting Counters

With clock skew larger than the configured YB clock
skew threshold, we were able to observe stale val-
ues from YSQL counters, wherein a read of a single,
increment-only record could observe a value lower than
the sum of all previous successful increments. This is a
violation of single-key linearizability, but has not (thus
far) appeared in our general-case linearizable register
tests–perhaps because we limit those workloads to sig-
nificantly lower throughput, to avoid running into a
combinatorial explosion of the state space.

This behavior, YugaByte confirms, is by design. It does
not violate serializability; only linearizability & strict
serializability. While YugaByte DB does claim to offer
“linearizability” and “strongly consistent replication”,
these invariants do not hold when clock skew thresh-
olds are exceeded.

4.8 Default Columns Initialized to NULL
When experimenting with various ways of ordering
rows for tests, we discovered an odd behavior: columns
which defaulted to NOW() could occasionally contain
NULL instead. Take, for instance, this schema:

CREATE TABLE cats (
birthday TIMESTAMP DEFAULT NOW(),
toes INT

) IF NOT EXISTS;

…and aworkload composed of amix of inserts (INSERT
INTO cats (toes) VALUES (?)), and reads (SELECT
birthday, toes FROM cats ORDER BY birthday).

Reads in this workload observe a mix of keys: most are
timestamps, but a significant fraction are are NULL.

Indeed, this issue affects every kind of default value,
not just NOW(). The cause? Non-transactional schema
changes. Schema defaults are assigned after the ta-
ble is created, which could allow inserts into recently
created tables to believe (improperly) that no default
value for the column was assigned.

4.9 Item Anti-Dependency Cycles

When master nodes crash or pause, YugaByte DB can
exhibit a serializability violation called G2-item (item
anti-dependency cycle) in append tests. We have ob-
served dozens of these anomalies, and we present ex-
amples here with minor changes for readability.2

Consider transactions over a set of lists, each identified
by a key like x or y. A transaction is a sequence of ran-
domly mixed read and append operations. We write [r
x [5 6]] to indicate a read of x returning the list [5
6], and [a x 7] represents appending the number 7
to the end of x’s list. The initial value of every list is
nil; an append of n to a nil list results in [n].

T1: …, [:a x 837], …, [r y [… 874 877 883]]
T2: …, [:a y 885], …, [r x [… 831 833 836]]

Here (and we have not, in the interest of space, pro-
vided the full values of x and y) T1 appends 837 to x,
which is not observed by T2, and T2 appends 885 to y,
which is not observed by T1. If this history were serial-
izable, one of these transactions would need to observe
the other’s effects; since they mutually fail to observe
each other, this history violates serializability.

Another example:

T1: …, [r y [3]], … [r x [1]]
T2: …, [r x nil], … [a y 2], …
T3: [a x 1], …

Since T2 appended 2 to y, and T1 did not observe that
append, T1 must precede T2. Since T2 observed the ini-
tial (nil) state of x, and T3 appended 1 to x, we know
T2 < T3. However, that append of 1 to x was observed
by T1, which means T3 < T1. This cycle implies there
exists no total order over transactions: this history, too,
cannot be serializable.

All cycles we found related to this bug involved mul-
tiple anti-dependencies: a relationship between trans-
actions T1 and T2, such that T1 fails to observe some
write performed by T2, and hence must precede T2 in
any serialization order. We have not yet observed a

2We use smaller numbers, omit irrelevant operations from transactions, omit full lists which include hundreds of numbers, and use
variable names like x instead of numeric IDs.

4

https://github.com/YugaByte/yugabyte-db/issues/2075
https://github.com/YugaByte/yugabyte-db/issues/2075
https://github.com/YugaByte/yugabyte-db/issues/2182
https://github.com/YugaByte/yugabyte-db/issues/2182
https://blog.yugabyte.com/yugabyte-db-1-2-passes-jepsen-testing/
https://docs.yugabyte.com/latest/comparisons/
https://github.com/YugaByte/yugabyte-db/issues/2021
https://www.semanticscholar.org/paper/Weak-Consistency%3A-A-Generalized-Theory-and-for-Adya-Liskov/32257d8d2b08c87e58c7b7f4b2430d58e4b51a81
https://www.semanticscholar.org/paper/Weak-Consistency%3A-A-Generalized-Theory-and-for-Adya-Liskov/32257d8d2b08c87e58c7b7f4b2430d58e4b51a81
https://github.com/YugaByte/yugabyte-db/issues/2125
https://github.com/YugaByte/yugabyte-db/issues/2125


cycle with only a single anti-dependency, which would
consistute G-single: read skew.

Moreover, these cycles occur purely with primary-key
reads and updates, and do not require the use of pred-
icates; these anomalies are therefore G2-item.

These errors are associated with the concurrent crash
and restart of all master processes, or when master

processes temporarily pause. YugaByte believes this
has to dowith a backwards-compatible codepathwhich,
when masters are inaccessible, allows proxies to sub-
mit incorrect requests to tablet servers. YugaByte’s en-
gineers think this bug could cause “much more serious
consistency issues”, but we havn’t observed anything
worse than G2-item yet.

A patch in 1.3.1.2-b1 appears to fix this issue.

№ Summary Event Required Fixed in

1962 Constraint violation error during table creation None Unresolved
1974 Wrong error message during update ... on conflict None 1.3.3*
1991 Create table if not exists throws already exists None Unresolved
2001 Create table if not exists memory leak None Unresolved
1993 Create table throws violates unique constraint None Unresolved
1992 Recovery from network partitions can take 100+ seconds Partition Unresolved
1995 Crash on table creation Leader election? 1.3.3*
2021 Columns with defaults may be initialized to null None Unresolved
2075 Gradual postgres process leak None Unresolved
2125 Anti-Dependency Cycles Master pause/crash 1.3.1.2-b1

* Version 1.3.3 is not yet ready, but patches for these issues have been tested in development builds, and should
be a part of the 1.3.3 release.

5 Discussion

In our testing, YugaByte DB 1.3.1 exhibited several is-
sues with DDL statements, as well as resource leaks
and crashes, especially on cluster startup or leader
transition. We also found two safety issues: columns
with defaults could be initialized to NULL, and G2-item
anomalies when masters are inaccessible. In addi-
tion, under normal operations, YugaByte DB appears
to slowly leak Postgres processes, eventually crashing
due to memory pressure. YugaByte is investigating re-
maining issues, and plans to fix remaining high prior-
ity issues by 2.0.

Otherwise, YugaByte DB was relatively robust in our
transactional tests. Although it claims to provide only
serializability, and theoretically allows realtime con-
sistency violations like stale reads and causal reverse,
these anomalies were rare in our testing.

Be aware that Jepsen is not a good measure of
database performance; we evaluate pathological work-
loads with fixed concurrency, rather than realistic
workloads with fixed request rates. In particular, we
note that YugaByte DB is intended for deployment
across multiple datacenters, but our tests used uni-
formly low-latency networks between all nodes, except
for failure cases.

Finally, we should note that Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove the correctness of any distributed system.

5.1 Recommendations

Because DDL operations (e.g. creating tables) are frag-
ile in YugaByte DB, we advise against automating
them. Concurrent operations appear more likely to
create issues, but even single-threaded table creation
can result in anomalous behavior, including strange er-
ror messages (1962, 1991, 1993), resource leaks (2001),
and crashes (1995). If automation is used, users
should avoid unbounded retries, and develop a strat-
egy for finding and purging duplicate tables. Having a
human operator in the loop should reduce the impact
of these issues.

While YugaByte DB generally recovers within a hand-
ful of seconds from a network partition (assuming the
partition is, in fact, recoverable), it can occasionally
take hundreds of seconds to resume normal operations
(1992). Be aware of variable recovery times when plan-
ning for, and testing behavior during, network failures.

The DEFAULT issue (2075) allows columns to be improp-

5

https://github.com/YugaByte/yugabyte-db/commit/4e87446657e6b77fe5bd6b4161b3433e8d7ac24a
https://github.com/YugaByte/yugabyte-db/issues/1962
https://github.com/YugaByte/yugabyte-db/issues/1974
https://github.com/YugaByte/yugabyte-db/issues/1991
https://github.com/YugaByte/yugabyte-db/issues/2001
https://github.com/YugaByte/yugabyte-db/issues/1993
https://github.com/YugaByte/yugabyte-db/issues/1992
https://github.com/YugaByte/yugabyte-db/issues/1995
https://github.com/YugaByte/yugabyte-db/issues/2021
https://github.com/YugaByte/yugabyte-db/issues/2075
https://github.com/YugaByte/yugabyte-db/issues/2125
https://www.cockroachlabs.com/blog/consistency-model/
https://github.com/YugaByte/yugabyte-db/issues/1962
https://github.com/YugaByte/yugabyte-db/issues/1991
https://github.com/YugaByte/yugabyte-db/issues/1993
https://github.com/YugaByte/yugabyte-db/issues/2001
https://github.com/YugaByte/yugabyte-db/issues/1995
https://github.com/YugaByte/yugabyte-db/issues/1992
https://github.com/YugaByte/yugabyte-db/issues/2075


erly initialized to NULL in freshly-created tables. Until
YugaByte DB provides transactional schema changes,
users should avoid writing to a table until its creation
has been completed. G2 anomalies (2125) could affect
many transactional workloads, though gauging their
safety impact would depend on a careful analysis of the
particular transaction semantics involved. We recom-
mend upgrading to the next production release above
1.3.1.2-b1, which should resolve the issue.

YSQL is still in beta, and SQL databases have many
interacting features. Our work focused on basic trans-
actional safety: reads and writes via primary key, in-
dexed, or unindexed columns. We are not equipped to
evaluate the broad range of features in a full-scale SQL
implementation. It should come as no surprise, then,
that our work did not encounter other other safety is-
sues in YugaByte DB extant in 1.3.1, such as 2111,
2061, 1946, 1546, 1386, 1250, or 990, …). Some of
these issues have been addressed by YB in recent de-
velopment builds, and others are pending.

As in our last analysis, YugaByte DB can violate some
of its safety guarantees (e.g. linearizability) when clock
skew exceeds the configured threshold, which defaults
to 50 ms. We recommend measuring the clock skew in
your environment over time, alerting on exceptional
skew, and setting --max_clock_skew_usec accord-
ingly. For comparison, Cockroach DB uses a default
value of 500 ms.

Though YugaByte advertises both serializability and
SQL features throughout their marketing pages, the
documentation also states that YSQL is “currently in
beta”, and it will not be “production ready” until ver-
sion 2.0. Jepsen and YugaByte do not advise relying
on serializable SQL transactions for safety-critical ap-
plications at this time. However, basic DML opera-
tions appear mostly safe, which gives us heart that re-
maining issues may either be rare or limited to specific
features (e.g. temp tables, compound indices, cascades,
etc.) rather than fundamental problems in the trans-
actional protocol.

5.2 Clocks

One unusual question remains: YugaByte DB uses hy-
brid logical clocks to provide consistency across Raft

clusters. However, in our testing, we observed no
serializability violations in response to clock skew of
hundreds of seconds, and with YugaByte DB’s clock
skew tolerance set to absurdly low (e.g. 1 microsec-
ond) thresholds, and only observed linearizability vio-
lations in specific, high-throughput workloads. If these
violations are possible, why are they so hard to find?

In theory, hybrid logical clocks allow databases like
Spanner, CockroachDB, and YugaByteDB to provide
strong consistency guarantees (e.g. seralizability or
strict serializability) without waiting for the mes-
sage delays they might otherwise require. Both Yu-
gaByte DB and Spanner require a minimum of 8
cross-datacenter message delays3 to perform a read-
write transaction. However, we also know that some
databases (e.g. FaunaDB) can obtain strict serializabil-
ity with a minimum of 2 cross-datacenter message de-
lays.4 It may be the case that the extra messages ex-
changed by YugaByte DB provide (via the Lamport-
clock behavior of hybrid logical clocks) sufficient order-
ing to timestamps that the effects of even large clock
skew are (typically) invisible.

It might also be that way we test YugaByte DB some-
how masks clock errors. Perhaps our transactions are
too frequent, or conflict too often, to observe diver-
gence. Perhaps slower intra-cluster network links are
required, or we need a special combination of clock er-
ror and, say, network partitions, which hasn’t yet oc-
curred in our randomized failure schedules.

Whatever the case, this is a good thing for operators:
nobody wants to worry about clock safety unless they
have to, and YugaByte DB appears to be mostly robust
to clock skew. Keep inmind that we cannot (rigorously)
test YugaByte DB’s use of CLOCK_MONOTONIC_RAW for
leader leases, but we suspect skew there is less of an
issue than CLOCK_REALTIME synchronization.

5.3 Future Work

The focus of this work was on expanding YugaByte’s
YSQL tests by introducing our new, general-purpose
transaction workload: the append test. We have run,
but not thoroughly explored, the other YCQL, or other
YSQL tests.

3In our previous analysis of 1.1.9, we provided a Lamport Diagram of YugaByte DB’s transaction protocol, which required 2 cross-
datacenter network delays for a read transaction, and 8 for a write transaction. This was based on YugaByte’s transaction path documen-
tation, which continues to suggest that read-write transactions require 10 cross-datacenter network delays. However, since March of 2019,
YugaByte DB (like Spanner) creates the tablet status record concurrently with provisional writes. Read-write transactions now involve 8
network delays (assuming a single read).

4Transactions in FaunaDB, Spanner, Cockroach, YugaByte DB must block for various reasons, which creates additional latency to
consider. A full description of their respective blocking costs is outside the scope of this discussion. We have also avoided discussion of
latency costs during node failures or partitions. While these concerns are important, we feel they are best addressed via experimental
measurement.

6

https://github.com/YugaByte/yugabyte-db/issues/2125
https://github.com/YugaByte/yugabyte-db/issues/2111
https://github.com/YugaByte/yugabyte-db/issues/2061
https://github.com/YugaByte/yugabyte-db/issues/1946
https://github.com/YugaByte/yugabyte-db/issues/1546
https://github.com/YugaByte/yugabyte-db/issues/1386
https://github.com/YugaByte/yugabyte-db/issues/1250
https://github.com/YugaByte/yugabyte-db/issues/990
https://www.cockroachlabs.com/docs/stable/recommended-production-settings.html
https://www.yugabyte.com/
https://www.yugabyte.com/planet-scale-sql/
https://docs.yugabyte.com/latest/introduction/
https://docs.yugabyte.com/latest/quick-start/explore-ysql/
https://jepsen.io/analyses/yugabyte-db-1.1.9
https://docs.yugabyte.com/latest/architecture/transactions/transactional-io-path/
https://docs.yugabyte.com/latest/architecture/transactions/transactional-io-path/


We have also not explored filesystem or disk corrup-
tion problems. Our present test design colocates mas-
ters with tablet servers, which is how YugaByte DB is
typically deployed in production. However, this intro-
duces a degree of false coupling when we create net-
work partitions. It might be useful to explore parti-
tions between just masters, or just tablet servers, in-
stead of both simultaneously. Our tests are also lim-
ited in their ability to simulate CLOCK_MONOTONIC_RAW
skew, which helps YugaByte DB ensure recency. Fu-
ture analyses could find a better technique for testing
CLOCK_REALTIME errors.

YugaByte DB’s transaction protocol is complex: there
are interacting systems of lock granularity, leases,
timestamps, blocking for safe timestamps, Raft log
ordering, membership changes, masters and tablet
servers, paths for recovery, and so on. While we can
test this system experimentally, Jepsen is concerned
that the complexity and time dependence of the algo-

rithmmight leave important corners of the state space
relatively undersampled. A formal model, combined
with a model checker, might prove fruitful in exploring
edge cases.

As YugaByte prepares to officially release support for
SQL and serializable transactions in version 2.0, they
plan to fix remaining serious bugs, and continue test-
ing internally. YugaByte engineers are also consider-
ing a formal specification of their transactional mecha-
nism, which could help find bugs we can’t find through
experimental means.

This work was funded by YugaByte, and conducted
in accordance with the Jepsen ethics policy. We
wish to thank the YugaByte team for their invalu-
able assistance—especially Timur Yusupov, Mikhail
Bautin, Amitanand Aiyer, Sergei Politov, Karthik Ran-
ganathan, Kannan Muthukkaruppan, Neha Deodhar,
Alexander Abdugafarov, and Bogdan Matican.

7

https://yugabyte.com
https://jepsen.io/ethics

	Updates
	Background
	Consistency

	Test Design
	Append Test

	Results
	Create Table Constraint Violations
	Create Table Type Already Exists
	And YOU Get a Table!
	Crash on Table Creation
	Slow Recovery During Partitions
	A Plethora of Worker Processes
	Undercounting Counters
	Default Columns Initialized to NULL
	Item Anti-Dependency Cycles

	Discussion
	Recommendations
	Clocks
	Future Work


