
Hazelcast 3.8.3
2017-10-06

Hazelcast is a distributed in-memory data grid, providing shared data structures for distributed systems. We show
that many of Hazelcast’s distributed data structures are unsafe in the presence of network partitions: updates to
maps can be lost, unique IDs may not be unique, atomic objects are not atomic, locks aren’t exclusive, and queues
can forget about enqueued elements. Stale and dirty reads are also possible in most types. We do identify a way
to build CRDTs on top of Hazelcast, which prevents the loss of acknowledged updates so long as operations do not
depend on order. Despite documentation alluding to these risks, Hazelcast users rely on Hazelcast in risky ways.
This work was performed independently, without compensation, and conducted in accordance with the Jepsen
ethics policy.

1 Errata

2017-10-07: IMap is not the only datatype supporting
merge: ICache is mergable as well.

2017-10-17: Java’s AtomicReferences may only be se-
quential (and linearizable in certain cases, like CaS up-
dates), rather than linearizable. The literature is some-
what unclear on this point.

2 Background

Hazelcast provides easy-to-use distributed data struc-
tures with rich, intuitive APIs and optional persis-
tence. It is often deployed as a synchronization ser-
vice for databases, caches, session stores, messaging
buses, or for service discovery. Users may embed a full
Hazelcast node directly into their JVM application, or
use a lightweight network client (available inmany lan-
guages) to talk to a dedicated Hazelcast cluster. Either
way, Hazelcast offers transparent distribution for rich
datatypes, with familiar Java APIs for sets, lists, maps,
locks, semaphores, queues, atomic objects, id genera-
tors, and more.

Hazelcast’s high-level documentation, and the names
of these objects themselves, imply that operations on
these objects provide certain safety guarantees. For
instance, the features page claims that Hazelcast’s
AtomicReferences offers guaranteed atomic compare-
and-set across a cluster, and the AtomicReference doc-
umentation confirms this claim. What the documenta-

tion for this datatype does notmention is that compare-
and-set on AtomicReferences is not, in point of fact,
atomic.

In section 26 of the manual, Network Partitioning -
Split-Brain Syndrome, Hazelcast explains that in the
event of a network partition, each component of the net-
work continues to run independently. They go on to
discuss a lost-update scenario when the MapStore per-
sistence layer is enabled for Maps: both clusters could
write conflicting entries to their backing database. The
documentation does notmention that this problem also
arises without a backing database—users could be for-
given for assuming that they won’t experience lost up-
dates if they use Hazelcast as a purely in-memory
store.

The documentation goes on to discuss split-brain merg-
ing: for Maps (and only Maps; a footnote explains
that other datatypes are not merged), conflicting val-
ues for the same key are merged using a configurable
merge policy. The built-in policies are a pair of
non-commutative heuristics (larger or smaller cluster
wins), last-write-wins, or higher-hits-wins. As we have
seen in prior Jepsen analyses, all of these techniques
can result in the loss of committed updates. For all
datatypes other than Maps, updates to the smaller
cluster (or an arbitrary cluster if the split is even) are
thrown away.

Hazelcast goes on to explain:

Hazelcast’s Split-Brain Protection enables
you to specify the minimum cluster size

1

http://jepsen.io/ethics.html
http://jepsen.io/ethics.html
https://hazelcast.org/
https://hazelcast.org/features/#DistributedDataStructures
https://hazelcast.org/features/#DistributedDataStructures
http://docs.hazelcast.org/docs/latest/manual/html-single/#iatomicreference
http://docs.hazelcast.org/docs/latest/manual/html-single/index.html#network-partitioning-split-brain-syndrome
http://docs.hazelcast.org/docs/latest/manual/html-single/index.html#network-partitioning-split-brain-syndrome
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#how-hazelcast-split-brain-merge-happens
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#how-hazelcast-split-brain-merge-happens


required for operations to occur. This
is achieved by defining and configuring a
split-brain protection cluster quorum. If
the cluster size is below the defined quo-
rum, the operations are rejected and the re-
jected operations return a QuorumExcep-
tion to their callers.

Your application continues its operations
on the remaining operating cluster. Any
application instances connected to the clus-
ter with sizes below the defined quorum
will be receiving exceptions which, depend-
ing on the programming and monitoring
setup, should generate alerts. The key
point is that rather than applications con-
tinuing in error with stale data, they are
prevented from doing so.

This implies that we should be able to update Maps,
Transactional Maps, Caches, Locks, and Queues
safely, so long as we choose a majority quorum policy
for those data structures. This is, unfortunately, not
the case:

It is normally seconds or tens of seconds
before the cluster is adjusted to exclude
unreachable members…. For this reason,
there will be a time window between the
network partitioning and the application of
Split-Brain Protection.

That implies that operations on most Hazelcast
datatype may be lost when the network is unreliable.
In this analysis, we experimentally confirm this hy-
pothesis, by testing the behavior of several Hazelcast
datatypes when the network is allowed to fail.

3 Test Design

We use the Jepsen distributed systems testing library
to evaluate Hazelcast’s safety. Wewrite a trivial server
application which starts a Hazelcast instance on each
of five nodes. We tune the Hazelcast configuration to
speed up test times, making heartbeats more frequent
and timeouts shorter. Cluster membership is fixed at
startup, and all nodes are connected via direct TCP
connections to every other node. We apply majority
quorum constraints to every datatype that supports
them.

Jepsen then uses the Hazelcast client library to con-
nect to various nodes, and perform operations against
Hazelcast datatypes. During these operations, we in-
troduce network partitions lasting 15 seconds, followed
by 30 seconds of full connectivity to allow the cluster to
recover. Before performing any final reads to confirm
safety, we allow Hazelcast 500 seconds of total network
connectivity to fully heal1, and merge any unmerged
records. Once the test is complete, we analyze the his-
tory of operations to identify whether common-sense
invariants on that datatype were preserved.

The operations we perform, and how we check for
correctness, depend on the particular datatype being
tested.

3.1 Locks

Hazelcast’s feature list claims that locks provide guar-
anteed mutual exclusion across a cluster.

If you lock using an ILock, the critical sec-
tion that it guards is guaranteed to be exe-
cuted by only one thread in the entire clus-
ter. Even though locks are great for syn-
chronization, they can lead to problems if
not used properly.

Specifically, those problems include:

In the split-brain scenario, the cluster be-
haves as if it were two different clusters.
Since two separate clusters are not aware
of each other, two members from different
clusters can acquire the same lock.

So locks don’t guarantee mutual exclusion—but the
docs go on to point to split-brain protection, so perhaps
there’s a chance of safety. We’ll set the lock to use ma-
jority quorums, so only a cluster with more than 1/2
of the nodes can acquire a lock safely. In addition, we
prevent Hazelcast from releasing a lock before another
client explicitly unlocks it by omitting the leaseTime
arguments to tryLock.2

Our clients perform a sequence of alternating acquire
and release operations, and verify that the resulting
history is linearizable; e.g. no two processes can hold
the same lock at the same time. This test fails reliably
as soon as a partition occurs, as this example shows.

1500 seconds is a fairly long time to wait for a cluster to become available again, but even with heartbeats and timeouts significantly
lowered to improve fault detection and recovery time, Hazelcast routinely takes hundreds of seconds to recover from a network fault. Most
datastores we’ve tested with Jepsen recover in tens of seconds; some as quickly as 1 second.

2Of course, this is not reasonable in a real distributed system, where clients may crash—all distributed lock services are fundamentally
unsafe—but we can pretend for testing purposes. 2

https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/server/src/jepsen/hazelcast_server.clj#L83
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/server/src/jepsen/hazelcast_server.clj#L28-L43
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/server/src/jepsen/hazelcast_server.clj#L45-L80
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/server/src/jepsen/hazelcast_server.clj#L45-L80
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L114-L153
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L114-L153
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L427
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L427
https://hazelcast.org/features/#DistributedDataStructures
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/#understanding-lock-behavior
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L271-L280
https://jepsen.io/analyses/hazelcast-3-8-3/locks-20170930T233306.000-0500.zip


Just after the start of a partition, several clients suc-
ceeded in acquiring a lock which was already held.
This diagram shows the concurrent structure of lock
operations. Time flows left to right, and each concur-
rent process is shown as a row. Blue bars show success-
ful operations, and pink traces show illegal transitions
between operations. Here, process 0 had acquired the
lock, and processes 2, 3, and 4 went on to successfully
acquire the lock before process 0 had released it. This
is the opposite of what a lock is supposed to do.

Locks in Hazelcast are not really locks. They may pro-
vide mutual exclusionmost of the time, but when a net-
work failure occurs, multiple clientsmay hold the same
lock concurrently. This occurs even in the absence of
process crashes, without lock timeouts allowing Hazel-
cast to reclaim stale locks, and with majority quorum
protection enabled.

3.2 Queues

Hazelcast queues provide a distributed equivalent to
Java’s BlockingQueue. The docs claim: “Using Hazel-
cast distributed queue, you can add an item in one ma-
chine and remove it from another one.” The manual

goes on to note that Queues support split-brain pro-
tection. What they fail to mention is that this is not
a guarantee of correctness: you can put an item into
a queue on one machine, Hazelcast will dutifully ac-
knowledge that item, and then consign it to the silent
void of /dev/null.

To test this, we perform a mixture of enqueues and de-
queues on a single queue. All enqueues are unique in-
tegers, so we can map enqueues to dequeues. At the
end of the test, we heal all network partitions, wait
500 seconds to allow the cluster time to recover, and
have every client drain all remaining elements from
the queue—which should ensure that every added ele-
ment has been dequeued at least once. We then exam-
ine the history to see whether this is the case.3

In this 20 minute long run, roughly 1/4 of attempted
enqueues appeared to succeed, and of those success-
fully enqueued messages, 2% were, in fact, silently
discarded. The window for data loss is relatively
small–only a few seconds at the start of each network
partition—because we’ve aggressively tuned Hazel-
cast’s heartbeats to very short intervals. With the de-
fault timeouts, quorum protection takes longer to kick
in, and the window for message loss is larger.

{:valid? false,
:lost
#{1903 1952 1946 1948 1922 1930 1929 1895 1905 1052 1937 1966 1921

...
1915 1935 1959 1974 1914 1951 1960 1967 212},

:recovered #{1853},
:recovered-frac 1/2665,
:unexpected-frac 0,
:unexpected #{},
:lost-frac 62/2665,
:duplicated-frac 42/2665,
:ok-frac 145/533,
:duplicated #{186 188 210 ... 1843 199 183}}

3Unfortunately, as you probably already know, computers.

3

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
https://hazelcast.org/features/#DistributedDataStructures
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#queue
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L222-L234
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L222-L234
https://jepsen.io/analyses/hazelcast-3-8-3/queues-20171001T002422.000-0500.zip


3.3 Atomic Longs

AtomicLongs (and their cousins, AtomicReferences)
provide a number (or arbitrary object) which can be
read, written, and updated via atomic get-and-set &
compare-and-set operations. Hazelcast’s feature list
claims these operations are “guaranted atomic across
… a cluster.” The documentation for IAtomicLong and
IAtomicReference fails to mention that these opera-
tions are not in fact atomic: operations can be lost or
improperly interleaved.

We could check that AtomicReference is linearizable.
It’s not clear that Hazelcast intends for AtomicRefer-
ences to actually be linearizable, but the documenta-
tion might imply it.4 However, in this case it is more
interesting to measure a weaker property: whether
AtomicReferences allow for non-atomic or lost updates.

We begin with an AtomicLong (or an AtomicReference)
initialized to 0 (null), and perform a sequence of atomic
increment-and-get (get + compare-and-set) operations
against it, across many nodes. If these operations
are atomic, successful increment-and-get operations
should record a sequence of unique integers, e.g. with-
out duplicates.

In this 30-second test of an AtomicReference, with a
single network partition, a little over 10% of all gener-

ated numbers were duplicated.

{:valid? false,
:attempted-count 239,
:acknowledged-count 235,
:duplicated-count 27,
:duplicated
{171 2,
172 2,
173 2,
175 2,
...
195 2,
196 2,
197 2,
198 2},

:range [1 208]},

During a partition, AtomicLongs and AtomicRefer-
ences diverge, allowing different nodes to see and mu-
tate different copies of the same “atomic” value. When
the partition resolves, all but one of these divergent
copies is discarded. Not only do AtomicLongs and
AtomicReferences allow stale reads, but they also allow
for lost updates and dirty reads. A strictly increment-
only counter could go backwards on a single node, if a
smaller value from another node were to overwrite it.

4The docs state “Hazelcast IAtomicLong is the distributed implementation of java.util.concurrent.atomic.AtomicLong”. AtomicLong,
like all types in java.util.concurrent.atomic, specifies that gets and sets have the memory semantics of volatile reads and writes, and that
compare-and-set is like a volatile read and write. The Java Memory Model, in turn, specifies that operations on volatile variables intro-
duce a synchronization barrier, which implies sequential consistency, and linearizability for compare-and-set operations. However, the
documentation avoids making claims about real-time ordering, and only states “atomicity”. We therefore restrict our testing to a weaker
property implied by atomicity.

4

https://hazelcast.org/features/#DistributedDataStructures
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#iatomiclong
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#iatomicreference
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L222-L234
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L171-L189
https://jepsen.io/analyses/hazelcast-3-8-3/atomic-refs-20171001T111816.000-0500.zip
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#iatomiclong
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4.4


Note that AtomicReference and AtomicLong do not
support quorum protection; unlike locks and queues,
they will diverge as long as the partition persists, in-
stead of diverging for only a few seconds at the start
of a partition. In this plot from a different run with a
longer partition, the grey region indicates the duration
of a network partition. Note that while one node re-
fuses updates, the other nodes are more than happy to
run independent copies of the AtomicReference for the
full duration of the partition. In this case, almost half
(312 of 824) of generated numbers were duplicates.

3.4 ID Generators

If AtomicLong cannot provide safe atomic updates, a
specialized datatype (like a flake ID) might be able to
provide unique IDs without the need for AtomicLong’s
coordination properties. Hazelcast provides an IdGen-
erator type for generating “cluster-wide unique identi-
fiers.” What the documentation for IdGenerator does
not mention is that IDs may not be unique in the event
of a network partition. Indeed, IdGenerator is backed
by an IAtomicLong internally, so it is subject to the ex-
act same problems we saw in that type.

We perform the same uniqueness test as for Atomic-
Longs, but this time using an IdGenerator to gener-
ate unique numbers. IdGenerators, too, fail to provide
uniqueness. If a pair of IdGenerators request a new
block of numbers from their underlying AtomicLong
during a partition, they will likely double-allocate that
entire block of IDs.

In this 30-second test, Hazelcast allocated ~91,000 du-
plicated IDs out of ~834,000; a little over 10%. Like
AtomicReferences, the fraction of duplicated IDs in-
creases the longer a partition lasts; quorum protection
does not limit the window for safety violations.

{:valid? false,
:attempted-count 834013,
:acknowledged-count 834013,
:duplicated-count 91179,
:duplicated
{705516 2,
705517 2,
705518 2,
...
705561 2,
705562 2,
705563 2},

:range [0 747591]}

3.5 Maps

Hazelcast offers aMap, which is a distributed, sharded
implementation of java.util.concurrent.ConcurrentMap.
The documentation claims that Maps are “thread-safe
to meet your thread safety requirements,” implying
that operations onmaps are safe in the presence of con-
current updates. For optimistic concurrency control,
Hazelcast maps offer operations like putIfAbsent and
replace (essentially, compare-and-set), which replace
missing or given values for a particular key with some
new value, unless the current value in the map differs.

These functions only make sense if operations have
some total order, but as we discussed earlier, during
partitions, there is no single value, or total order, of op-
erations. What does it mean to replace A with B, when
the current values are both A and C? As we shall see,
there is a good reason for Hazelcast to provide these
operations, even when they may be, in general, unsafe.

First things first: let us check whether replace actu-
ally works. We take a map containing a single key, and
store in that key an array of longs, representing a set
of numbers. We attempt to add elements to that set
by reading the current value, then using replace (or
putIfAbsent) to replace the set we read with a new set
now containing the added element. If replace obeys
the contract of a ConcurrentMap, it should perform
an atomic compare-and-set. Every successful replace
should result in that particular element being present
in all subsequent versions of the set.

After performing our series of replace operations, we
heal all network partitions, allow the cluster 500 sec-
onds to recover, and perform a final read to identify
which elements survived.

Unfortunately, not all elements do. Quorum protection
is insufficient to prevent the loss of acknowledged up-
dates. In this test, Hazelcast lost four modifications to
a single key, all clustered around the start of a network
partition.

{:valid? false,
:lost "#{1703..1704 1706..1707}",
:recovered "#{}",
:ok
"#{1..2 4..36 ... 3724 3727..3728}",
:recovered-frac 0,
:unexpected-frac 0,
:unexpected "#{}",
:lost-frac 2/1865,
:ok-frac 1221/1865},

5

http://yellerapp.com/posts/2015-02-09-flake-ids.html
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#idgenerator
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#idgenerator
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L191-L205
https://jepsen.io/analyses/hazelcast-3-8-3
http://docs.hazelcast.org/docs/3.8.6/manual/html-single/index.html#locking-maps
https://github.com/jepsen-io/jepsen/blob/524fa4985abc10a7492053c3b3f2165204170091/hazelcast/src/jepsen/hazelcast.clj#L326-L343
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://jepsen.io/analyses/hazelcast-3-8-3/map-20171001T144227.000-0500.zip


3.6 Maps with CRDTs

Clearly, Maps are unsafe in the presence of network
faults, even if majority quorums are used to prevent
concurrent modification in independent clusters. How-
ever, Maps offer a feature no other Hazelcast datatype
has: they can merge conflicting modifications after
split-brain recovery. The default merge policy picks
one of the disparate versions and discards the other,
losing updates, but we could write a CRDTmerge func-
tion instead, allowing us to preserve concurrent up-
dates from isolated components of the cluster.

In this case, our data type is a grow-only set (a G-set),
and our merge function is set union. We write a merge
policy—a Java class—to merge two sets, and instruct
the set to use that merge policy.

In this 300-second test, out of 1315 attempts, 1298 ele-
ments were successfully added to the set, and every one
of those acknowledged elements was present in the fi-
nal reads. These results are typical of CRDTmap tests;
they appear, at least in these particular circumstances,
to safely preserve all operations.

{:valid? true,
:lost "#{}",
:recovered "#{}",
:ok

"#{0..11 13..83 ... 1286..1306 1311..1314}",
:recovered-frac 0,
:unexpected-frac 0,
:unexpected "#{}",
:lost-frac 0,
:ok-frac 1298/1315},

:valid? true}

Note that the merge function is only called during split-
brain recovery, which means that we must continue
to use our composite read+replace strategy. It may
help to understand a Hazelcast cluster as a cluster of
components, where each component is updated using a
sequential compare-and-set, and updates to disparate
components are merged with our commutative, asso-
ciative, and idempotent merge function.

This approach is not limited to G-sets. We can imple-
ment any CRDT we like, including observed-removed
sets, booleans with or/and, integers with min/max,
counters, composite types like maps, and so on. In ad-
dition, we can relax the quorum constraint on CRDT

maps, allowing updates to proceed safely on all nodes
in the cluster, instead of only on a majority component.

4 Discussion

Although Hazelcast’s partition-tolerance documenta-
tion hints that data loss might be an issue, it fails to
make these properties explicit, and many datatypes
claim to provide safety properties far stronger than
what they actually guarantee.

In addition, the names of Hazelcast’s datatypes, and
the functions provided on those types, imply a cer-
tain fitness-for-purpose, e.g. that users can use these
types and functions in a meaningful way. What is the
point of an ID Generator which emits duplicate IDs? A
lock that doesn’t lock? Who wants an AtomicReference
which is not atomic? Of what possible use is a queue
which doesn’t, well, queue?5

By providing familiar interfaces to Java programmers,
and explicitly describing Hazelcast types as the ana-
logue of well-known types like AtomicLong or Con-
currentMap, users are encouraged to treat Hazelcast
types as if they offered the same concurrency safety
properties of their Java counterparts. This would be
a wonderful idea if Hazelcast maps did offer atomic
replace, queues which didn’t lose inserted elements,
and so on.

This is particularly vexing because there are exist-
ing systems and algorithms which do provide these
safety properties over similar datatypes. Consensus
systems like Zookeeper and etcd, for instance, provide
linearizable updates and reads6 on registers, which is
what Hazelcast claims to offer with its AtomicRefer-
ences. ID generators can be implemented with only
a single round of consensus to initialize node IDs, ei-
ther as local counters modulo node-count, or using
flake IDs. Likewise: when cluster membership is fixed
(e.g. by a round of consensus), counters can be made to-
tally available with extremely low latency by using PN-
Counters. Distributed queues cannot guarantee the
ordering or exactly-once-delivery of their single-node
counterparts, which means they are loosely equivalent
to Observed-Removed Sets plus a loose temporal order,
which could be, again, provided by flake IDs.

This is not to say that there are no safe uses of
Hazelcast. Immutable records are obviously fine, pro-
vided users generate their own unique IDs for inserted

5Of course, there are use cases which only need safety some of the time. A broken lock service, for instance, may still be useful for
ensuring a task is typically performed by a single node at a time.

6By default, reads in Zookeeper are only sequentially consistent, possibly lagging behind recent updates. However, linearizable reads
are also possible in Zookeeper, by performing a SYNC prior to a read. Likewise, etcd and Consul offer linearizable quorum read options.

6

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
http://hal.upmc.fr/inria-00555588/document
http://hal.upmc.fr/inria-00555588/document
https://github.com/jepsen-io/jepsen/blob/master/hazelcast/server/java/jepsen/hazelcast/server/SetUnionMergePolicy.java
https://jepsen.io/analyses/hazelcast-3-8-3/crdt-map-20171001T130353.000-0500.zip
http://yellerapp.com/posts/2015-02-09-flake-ids.html
https://github.com/aphyr/meangirls#pn-counter
https://github.com/aphyr/meangirls#pn-counter
https://github.com/Factual/skuld
https://github.com/aphyr/meangirls#or-set


records instead of relying on, say, IdGenerator, and so
long as read-after-insert consistency is not expected.
Engineers typically expect a distributed cache to lose
updates and expose stale data, so using a Hazelcast
Map as a cache is, in general, okay. So too, for applica-
tions where the consequences of data loss are relatively
minor (e.g. metrics, service health, sensor data) and
outages are infrequent. Pubsub messaging through
topics, similarly, is often assumed to be best-effort, and
occasionalmessage loss is fine. Hazelcast could bewell-
suited for service discovery,7 since we want maximal
availability, and incorrect or out-of-date information
about what nodes run which services should only in-
troduce liveness or performance, not safety problems.

Indeed, most users featured on the Hazelcast web site
seem more oriented towards caching and discovery in-
stead of using Hazelcast to ensure data safety. How-
ever, there are some systems which do appear to rely
on Hazelcast’s atomic primitives.

Consider, for example, BagriDB, a recently featured
partner on the Hazelcast Blog. BagriDB uses Hazel-
cast to implement its an MVCC transaction manager
on top of Hazelcast. While BagriDB claims to provide
ACID transactions up to Repeatable Read, the trans-
action IDs in BagriDB are generated by a Hazelcast
AtomicLong, with a small wrapper, incremented at the
start of each transaction. This means that BagriDB
could pick the same transaction ID for multiple concur-
rent transactions, which might result in the violation
of transactional guarantees. BagriDB explained:

Yes, the transaction IDs will be duplicated,
but they will live in two different clusters
after network partitioning and will be com-
mitted independently and successfully in
most cases.

When asked whether they were aware of AtomicLong’s
non-atomicity, BagriDB responded:

No, I was not aware of this behavior of
IAtomicLong at network partitioning.

Likewise, OrientDB, one of eight partners featured on
Hazelcast’s home page, uses Hazelcast Locks to guar-
antee only a single node at a time can initialize regis-
tered nodes and to elect new lock managers. Hazelcast
maps are also used to exchange leader and member-
ship information; stale or lost updates to these maps
might result in unexpected behavior.

We asked OrientDB about this, and OrientDB’s engi-
neers confirmed that they originally made extensive
use of Hazelcast Locks for transactions. However, split-
brain issues with Lock safety forced them to write their
own distributed lock manager, and Hazelcast is now
only used to reach consensus on cluster metadata on
node startup. OrientDB plans to remove Hazelcast en-
tirely in an upcoming release. They go on to note that
they felt the documentation did not describe the poten-
tial for inconsistency:

Documentation doesn’t say anything about
all of this. If you follow the documentation
[it] looks like everything works as it’s sup-
posed to do.

Respondents on StackOverflow also indicate produc-
tion use of Hazelcast for locking and atomic map up-
dates. For instance:

We use extensive use of distributed lock-
ing to make sure SKU Items of inventory
are modified in atomic way because there
are hundred of nodes in our web applica-
tion cluster that operates concurrently on
these items.

and

We are using Hazelcast from last 3 years in
our e-commerce application to make sure
availability (supply & demand) is consis-
tent, atomic, available & scalable. We
are using IMap (distributed map) to cache
the data and Entry Processor for read &
write operations to do fast in-memory op-
erations on IMap without you having to
worry about locks.

We recommend that Hazelcast users carefully review
their use of Hazelcast primitives. In particular, we en-
courage you to ask:

• For Locks, would the system be safe if the lock
were omitted?

• For IdGenerators, what would be the impact of
giving multiple requestors the same IDs?

• For Queues, what would happen if some en-
queued messages were lost?

• Are there any uses of AtomicLongs or AtomicRef-
erences in your code? Why?

7As another example, consider the problem of electing leaders in a protocol like multipaxos, where the protocol is safe regardless of which
leaders are chosen, but having fewer leaders at any given point in time improves performance.

7

https://hazelcast.org/projects/
http://bagridb.com/
https://blog.hazelcast.com/bagri-document-db-hazelcast-imdg/
http://bagridb.com/features/acid-transactions/
https://github.com/dsukhoroslov/bagri/blob/24ca047084a8e2efa5a93118ccd5f943bd567e13/bagri-server/bagri-server-hazelcast/src/main/java/com/bagri/server/hazelcast/impl/TransactionManagementImpl.java#L95
https://github.com/dsukhoroslov/bagri/blob/24ca047084a8e2efa5a93118ccd5f943bd567e13/bagri-client/bagri-client-hazelcast/src/main/java/com/bagri/client/hazelcast/impl/IdGeneratorImpl.java#L23
https://github.com/dsukhoroslov/bagri/blob/24ca047084a8e2efa5a93118ccd5f943bd567e13/bagri-server/bagri-server-hazelcast/src/main/java/com/bagri/server/hazelcast/impl/TransactionManagementImpl.java#L138
http://orientdb.com/orientdb/
https://github.com/orientechnologies/orientdb/blob/5684b63f6efb03d407d0175b9eab616b36bbecbd/distributed/src/main/java/com/orientechnologies/orient/server/hazelcast/OHazelcastPlugin.java#L333
https://github.com/orientechnologies/orientdb/blob/5684b63f6efb03d407d0175b9eab616b36bbecbd/distributed/src/main/java/com/orientechnologies/orient/server/hazelcast/OHazelcastPlugin.java#L333
https://github.com/orientechnologies/orientdb/blob/5684b63f6efb03d407d0175b9eab616b36bbecbd/distributed/src/main/java/com/orientechnologies/orient/server/hazelcast/OHazelcastPlugin.java#L1601
https://stackoverflow.com/questions/4250786/realworld-hazelcast


• For Maps, would the system be safe if any
put were lost? What about a double-applied
putIfAbsent? Be especially wary of calls to
replace.

• Are your Map values structured as a CRDT with
an appropriate merge function, or is order of op-
erations important?

And in general, ask:

• Would it be safe to read some prior state of Hazel-
cast, instead of the current state?

• Does the system use Hazelcast as “fuzzy” state—
e.g. as a cache, a discovery mechanism, or lossy
store?

As for the Hazelcast team: we suggest that Hazelcast
add appropriate warnings to the documentation for
each datatype. Explicitly tell users that AtomicRefer-
ences are not atomic, that Locks are not exclusive, that
Queues can lose messages, and so on. While the exist-
ing documentation on split-brain hints at these behav-
iors, more prominent warnings might prevent users
from, say, building transaction management systems
on top of non-unique ID generators.

We believe that Hazelcast’s primitives are useful, but
objects like AtomicReferences and Maps with replace
imply consensus, and therefore deserve a real consen-
sus system. Hazelcast should adopt or implement a
proven consensus algorithm, like ZAB or Raft, and use
it to back these datatypes.

Having a consensus system also enables atomic man-
agement of cluster membership and shard allocation,
which unlocks efficient, eventually consistent imple-
mentations of counters, ID generators, queues, and
generalized CRDTs. We recommend that Hazelcast
adopt coordination-free algorithms (e.g. PN-Counters,
flake IDs, etc) for these data structures to simplify
their implementation, improve performance, and pre-
vent lost updates.

Finally, almost all uses of lock services for safety in
distributed systems are fundamentally flawed: users
continue to interpret distributed locks as if they were
equivalent to single-node mutexes. Lock services can-
not guarantee exclusion in asynchronous networks, be-
cause there is no way to distinguish between a crashed
node and a slow one: releasing any stale lock runs the
risk of handing it to two processes concurrently. Even
if we could provide a true distributed mutex, there is
nothing which guarantees the network messages emit-
ted by lock holders only take effect while the lock is
held. This is why mature “lock services” like Chubby
use a sequence number, which lock holders must use
in their operations and downstream services must re-
spect, to enforce exclusive and sequential execution of
lockholder side effects. Hazelcast should remove or re-
name8 Locks to avoid this problem, or couple them to
a sequentially consistent sequence number.

These problems are not bugs; they are fundamental
design decisions. Hazelcast has placed sequential or
linearizable datatypes atop an eventually-consistent
replication system which makes unjustifiably opti-
mistic assumptions about node and network reliabil-
ity. Jepsen has not filed specific bug reports for these
issues with Hazelcast; instead, we feel that a compre-
hensive re-evaluation of Hazelcast’s documentation,
datatypes, and replication algorithms is in order.

We wish to thank Jordan Halterman for his discus-
sion of Hazelcast use cases. Luigi Dell’Aquila & Luca
Garulli from OrientDB, and Denis Sukhoroslov from
BagriDB, were instrumental in understanding those
systems’ use of Hazelcast. Thanks also to Julia Evans,
Sarah Huffman, Camille Fournier, Moishe Lettvin,
Tim Kordas, André Arko, Allison Kaptur, Coda Hale,
and Peter Alvaro for reading and offering comments on
initial drafts. Finally, thanks to Greg Luck, from Hazel-
cast, for his comments and corrections. This research
was performed independently by Jepsen, without com-
pensation, and conducted in accordance with the Jepsen
ethics policy.

8Perhaps an “ApproxiLock”, or a “MostlyMutex”.

8

https://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
http://jepsen.io/ethics.html
http://jepsen.io/ethics.html

	Errata
	Background
	Test Design
	Locks
	Queues
	Atomic Longs
	ID Generators
	Maps
	Maps with CRDTs

	Discussion

