
Amazon RDS for PostgreSQL 17.4
Kyle Kingsbury
2025-04-29

Amazon RDS for PostgreSQL is an Amazon Web Services (AWS) service which provides managed instances
of the PostgreSQL database. We show that Amazon RDS for PostgreSQL multi-AZ clusters violate Snapshot
Isolation, the strongest consistency model supported across all endpoints. Healthy clusters occasionally allow
Long Fork and other G-nonadjacent cycles. These phenomena occurred in every version tested, from 13.15 to
17.4. Amazon RDS for PostgreSQL may instead provide Parallel Snapshot Isolation. This work was performed
independently by Jepsen, without compensation, and conducted in accordance with the Jepsen ethics policy.

1 Update, 2025-05-03

AWS’s Sergey Melnik, along with HN commenters
matashii and Ants Aasma, have identified the cause
of Long Fork in PostgreSQL clusters. As described
a 2013 mailing list post, the order in which a Post-
greSQL primary makes transactions visible is deter-
mined by an in-memory lock. Secondaries, however,
make transactions visible based on their order in the
Write-Ahead Log (WAL). The lock order and WAL or-
der can be different, which causes primaries and sec-
ondaries to disagree on the apparent order of transac-
tions. Melnik has written a post on the AWS blog ex-
plaining this behavior. Jepsen encourages both AWS
and PostgreSQL to document this issue while they
work to fix it.

2 Background

PostgreSQL is a popular open source general-purpose
SQL database. It uses multiversion concurrency con-
trol (MVCC) to provide three levels of transaction iso-
lation. PostgreSQL’s “Read Uncommitted” and “Read
Committed” are both Read Committed. The “Repeat-
able Read” level actually provides Snapshot Isolation,
not Repeatable Read. “Serializable” provides Serializ-
ability.

Amazon RDS for PostgreSQL is an AWS service which
provides managed PostgreSQL clusters. RDS auto-
mates provisioning, storage management, replication,
backups, upgrades, and more. Multi-AZ deployments
distribute database nodes across multiple availabil-
ity zones, reducing the probability of correlated fail-
ure. RDS uses synchronous replication to ensure that
transactions are durable both on primary and (at least
one) secondary instances before acknowledging.

From a user perspective, Amazon RDS for PostgreSQL
provides a pair of URLs which speak the PostgreSQL

wire protocol: a primary endpoint for read-write trans-
actions, and a reader endpoint for read-only transac-
tions. The primary endpoint supports all PostgreSQL
isolation levels, while secondaries do not support Se-
rializable. The strongest level supported across all
nodes is therefore Snapshot Isolation (which Post-
greSQL terms “Repeatable Read”).

3 Test Design

We adapted Jepsen’s test library for PostgreSQL for
use with Amazon RDS for PostgreSQL with a small
wrapper program. For each round of tests, we provi-
sioned an RDS cluster using AWS’s CreateDBCluster
API, using gp3 storage and db.m6id.large instances.
We then launched a single EC2 node to run our tests,
and provided it with the main and read-only endpoints
of the RDS cluster. We performed no fault injection,
and triggered no failovers.

As in our previous work on PostgreSQL, our primary
workload consisted of transactions over lists of unique
integers. We stored each list in a single row, encoded
as a TEXT field of comma-separated values. Transac-
tions could either read a list by primary key, or append
a unique integer to a list using CONCAT. This workload
allowed our Elle checker to verify a variety of isolation
levels, mainly by inferring dataflow dependencies be-
tween transactions and finding cycles in the resulting
graph.

4 Results

Under healthy conditions, with moderate concur-
rency, Amazon RDS for PostgreSQL 17.4 exhibited G-
nonadjacent cycles every few minutes. Consider this
two-minute test run, which performed approximately
150 write transactions per second, along with 1600
read-only transactions per second. It contains the fol-
lowing cycle of four transactions:

1

https://aws.amazon.com/rds/postgresql/
https://www.postgresql.org/
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/phenomena/long-fork
https://jepsen.io/consistency/phenomena/g-nonadjacent
https://scispace.com/pdf/transactional-storage-for-geo-replicated-systems-2j5mhrj29h.pdf
https://jepsen.io/analyses/ethics
https://news.ycombinator.com/item?id=43843790
https://www.postgresql.org/message-id/flat/CA%2BCSw_uNoGCy8p17fxPhMUC%2B-TWspLEPYLhfJeTm1GdWgVDxRA%40mail.gmail.com
https://aws.amazon.com/blogs/database/understanding-transaction-visibility-in-postgresql-clusters-with-read-replicas/
https://www.postgresql.org/
https://www.postgresql.org/docs/17/transaction-iso.html
https://www.postgresql.org/docs/17/transaction-iso.html
https://jepsen.io/consistency/models/read-committed
https://jepsen.io/consistency/models/snapshot-isolation
https://jepsen.io/consistency/models/repeatable-read
https://jepsen.io/consistency/models/serializable
https://jepsen.io/consistency/models/serializable
https://aws.amazon.com/rds/postgresql/
https://aws.amazon.com/rds/features/multi-az/
https://github.com/jepsen-io/postgres/tree/225203dd64ad5e5e4fe481ccb8b180b7d0d99f9d/postgres
https://github.com/jepsen-io/postgres/tree/225203dd64ad5e5e4fe481ccb8b180b7d0d99f9d/rds
https://github.com/jepsen-io/postgres/tree/225203dd64ad5e5e4fe481ccb8b180b7d0d99f9d/rds
https://github.com/jepsen-io/rds/blob/13cada8381b7cde00bca3adfb005a66613656039/src/jepsen/rds.clj#L284-L377
https://github.com/jepsen-io/rds/blob/13cada8381b7cde00bca3adfb005a66613656039/src/jepsen/rds.clj#L284-L377
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBCluster.html
https://jepsen.io/analyses/postgresql-12.3#test-design
https://github.com/jepsen-io/postgres/blob/225203dd64ad5e5e4fe481ccb8b180b7d0d99f9d/postgres/src/jepsen/postgres/workload/append.clj
https://github.com/jepsen-io/postgres/blob/225203dd64ad5e5e4fe481ccb8b180b7d0d99f9d/postgres/src/jepsen/postgres/workload/append.clj
https://github.com/jepsen-io/elle
https://jepsen.io/consistency/phenomena/g-nonadjacent
https://jepsen.io/consistency/phenomena/g-nonadjacent
https://s3.amazonaws.com/jepsen.io/analyses/amazon-rds-for-postgresql-17.4/20250406T172435-long-fork.zip
https://s3.amazonaws.com/jepsen.io/analyses/amazon-rds-for-postgresql-17.4/20250406T172435-long-fork.zip


a 89 9

r 90 nil r 89 [4 9] r 90 nil

:wr

r 89 [4] a 90 3 r 90 [11 3]

:rw

a 90 11

:rw

:ww

From top to bottom, call these transactions 𝑇1, 𝑇2, 𝑇3,
and 𝑇4. 𝑇1 appended 9 to row 89, resulting in the list
[4 9], which 𝑇2 observed. 𝑇3 appended 11 to row 90,
resulting in the list [11]. That version was overwrit-
ten by 𝑇4, which appended 3 to row 90, and read the
resulting list [11, 3]. While 𝑇2 observed 𝑇1’s append
to row 89, it failed to observe 𝑇3’s append to row 90.
Symmetrically, 𝑇4 observed 𝑇3’s append to row 90, but
failed to observe 𝑇1’s append to 89.
Since this cycle includes read-write dependencies
which are not adjacent to each other, this cycle is G-
nonadjacent, a violation of Snapshot Isolation. This
behavior should not occur in standard PostgreSQL
at “Repeatable Read” and we have not observed it
there.
To understand why this cycle is illegal, recall that in
Snapshot Isolation, every transaction (apparently) op-
erates on a snapshot of the database taken at some
start timestamp 𝑠. That transaction’s effects are made
visible to others at some later commit timestamp 𝑐. In
order for 𝑇2 to read 𝑇1’s append, its start timestamp
must have followed 𝑇1’s commit timestamp: 𝑐1 < 𝑠2.
Since 𝑇2 did not observe 𝑇3’s append, 𝑠2 < 𝑐3. Since
𝑇4 overwrote (and observed) 𝑇3, 𝑐3 < 𝑠4. But 𝑇4 did
not observe 𝑇1’s append, so 𝑠4 < 𝑐1. We have a contra-
diction! There is no way these timestamps can each
precede each other.
This cycle is also an example of Long Fork. The first
and second transactions compose one logical fork of
the state. The third and fourth comprise a second.

Each fork updates a different row, but neither fork
observes the other’s effects. Curiously, we did not ob-
serve Short Fork, also known as Write Skew. This sug-
gests that Amazon RDS for PostgreSQL might provide
Parallel Snapshot Isolation, a slightly weaker consis-
tency model.
We observed a variety of G-nonadjacent anomalies, in-
cluding those linked only by write-read edges, as well
as several with more than four transactions. They oc-
curred in every PostgreSQL version we tested, from
13.15 (the oldest version which AWS supported) to 17.4
(the newest).

5 Discussion

From the presence of Long Fork and other G-
nonadjacent cycles, we conclude that Amazon RDS for
PostgreSQL multi-AZ clusters do not ensure Snapshot
Isolation. Instead, they may provide Parallel Snap-
shot Isolation, a slightly weaker model. In this re-
spect Amazon RDS for PostgreSQL multi-AZ clusters
offer weaker safety semantics than a single-node Post-
greSQL system, which, in our previous testing, ap-
peared to provide Strong Snapshot Isolation.
Users of Amazon RDS for PostgreSQL may wish to
examine their transaction structures with an eye to-
wards Long Fork, or design experiments to verify
whether their intended invariants are preserved. A
read transactions may disagree with other transac-
tions as to the order in which transactions were ex-
ecuted. Since these anomalies appear to involve
queries against read-only secondaries, it may be pos-
sible to recover Snapshot Isolation by only using the
writer endpoint, or ensuring that every safety-critical
transaction includes at least one write.
This report is the product of a cursory exploration—
we have not investigated Amazon RDS for PostgreSQL
behavior in detail. As always, Jepsen takes an experi-
mental approach to safety verification: we can prove
the presence of bugs, but not their absence. While
we make extensive efforts to find problems, we cannot
prove correctness.
Our thanks to Irene Kannyo for her editorial support.
Thanks also to Sergey Melnik, matashii, and Ants
Aasma for helping to identify the cause of this issue af-
ter the release of this report, This work was performed
independently by Jepsen, without compensation, and
conducted in accordance with the Jepsen ethics pol-
icy.

2

https://jepsen.io/consistency/dependencies
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://jepsen.io/consistency/phenomena/long-fork
https://jepsen.io/consistency/phenomena/a5b
https://www.cs.princeton.edu/courses/archive/fall13/cos518/papers/walter.pdf
https://jepsen.io/analyses/postgresql-12.3
https://www.irenekannyo.com/
https://jepsen.io/analyses/ethics
https://jepsen.io/analyses/ethics

	Update, 2025-05-03
	Background
	Test Design
	Results
	Discussion

